Publications






Main Page

Acad. appoinments

Academic activites

Fields and studies

Awards and scholarships

Publications 

Conferences and schools

Teaching philosophy

Statement of Research interest

References

Favorite links

Photo page

  


Scientific Publications


 

  Differential Equations

 

[1] E. M. Elabbasy and S. H. Saker, Oscillation of nonlinear delay differential equations with several positive and negative coefficients, Kyungpook Mathematical Journal, Vol. 39 (1999), 366-376.


[2] E. M. Elabbasy, S. H. Saker and K. Saif, Oscillation of nonlinear delay differential equations with application to models exhibiting the Allee effect, Far East Journal of Mathematical Sciences, Vol. 1, no. 4 (1999), 603-620.


[3] E. M. Elabbasy, A. S. Hegazi and S. H. Saker, Oscillation of solutions to delay differential equations with positive and negative coefficients, Electronic Journal of Differential Equations 2000, No. 13 (2000), 1-13.


[4] Ravi P. Agarwal and S. H. Saker, Oscillation of solutions to neutral delay differential equations with positive and negative coefficients, International Journal of Differential Equations and Applications 2 (2001), 449-465.


[5] S. H. Saker and E. M. Elabbasy, Oscillation of first order neutral delay differential equations, Kyungpook Mathematical Journal 41 (2001), 311-321.

 

[6] W. T. Li and S. H. Saker, Oscillation of nonlinear neutral delay differential equations and applications, Annales Polinici Mathematici 77 (2001), no. 1, 39-51.

 

[7] S. H. Saker, Oscillation of higher order neutral delay differential equations with variable coefficients, Dynamic Systems & Application 11 (2002), No.1,  107-125.

 

[8] I. Kubiaczk and S. H. Saker, New oscillation criteria of first order delay differential equations, Demonstr. Math. 35, no.2 (2002), 313-324.

 

[9] W. T. Li and S. H. Saker, Oscillation of solutions to impulsive delay differential equations, Commentationes Mathematicae XLII (2002), 63-74.

 

[10] I. Kubiaczyk, S. H. Saker, Oscillation of solution of neutral delay differential equations, Math. Slovaca 52 (2002), no. 3, 343-359.

 

[11] S. H. Saker and I. Kubiaczyk, Oscillation of nonlinear neutral delay differential equations, J. Appl. Analysis 8 (2002), no.2, 261-278.

 

[12] S. H. Saker, Oscillation of second order neutral delay differential equations of Emden-Fowler type, Acta Math. Hungarica 100, no.1-2  (2003), 7-32.

 

[13] E. M. Elabbasy and S. H. Saker, Oscillation of delay differential equations with several positive and negative coefficients, Disc. Math. Differential Inclusion, 23 (2003) 39-52.

 

[14] S. H. Saker, P.Y.H. Pang and Ravi P Agarwal, Oscillation theorems for second order nonlinear functional differential equations with damping, Dynamic Sys. Appl. 12 (2003), 307-322.

 

[15] I. Kubiaczyk and S. H. Saker and J. Morhalo, New oscillation criteria for nonlinear neutral delay differential equations, Appl. Math. Comp. 142 (2-3)(2003), 225-242.

 

[16] S. H. Saker, Oscillation of solutions of a pair of coupled nonlinear delay differential equations, Portugalae Mathematica 60 (2003), 319-336.

 

[17] I. Kubiaczyk, W. T. Li and S. H. Saker, Oscillation of higher order delay differential equations with applications to hyperbolic equations, Indian J. Pure & Appl. Math. 34 (2003), 1259-1271.

 

[18] I. Kubiaczyk and S. H. Saker, Oscillation theorems of second order nonlinear neutral delay differential equations, Disc. Math. Diff. Incl. Cont. Optim. 22 (2002), 185-212.

 

[19] S. H. Saker and J. V. Manojlovic, Oscillation criteria for second order Superlinear neutral delay differential equations,  EJQTDE. 10 (2004), 1-22.

 

[20] E. M. Elabbasy, T. S. Hassan, S. H. Saker, Oscillation of second-order nonlinear differential equations with a damping term, EJDE Vol. 2005 (2005), No. 76, pp. 1-13.

 

[21] S. H. Saker, Oscillation criteria of certain class of third-order nonlinear delay differential equations, Math. Slovaca (accepted).

 

[22] Y. G. Sun and S. H. Saker, Forced Oscillation of higher order nonlinear differential equations, Appl. Math. Comp. (in press).

 

[23] E. M. Elabbasy, T. S. Hassan, S. H. Saker, Oscillation and nonoscillation of nonlinear neutral delay differential equations with several positive and negative coefficients, , Kyungpook Mathematical Journal (accepted).

 

[24] E. M. Elabbasy, T. S. Hassan, S. H. Saker, Necessary and sufficient conditions for oscillation of neutral differential equation, Serdica Math. J. 31 (2005), 1001-1012.

[25] E. M. Elabbasy, T. S. Hassan, S. H. Saker, Oscillation criteria for first-order nonlinear neutral delay differential equations, Vol. 2005(2005), No. 134, pp. 1-18.

 

[26] E. M. Elabbasy, T. S. Hassan, S. H. Saker, New oscillation Criteria for first order nonlinear neutral delay differential equations, J. Appl. Math. Comp. (accepted).


 

 Partial Differential Equations

 

[1] I. Kubiaczyk, S. H. Saker, Oscillation of parabolic delay differential equations, Demonst. Math. 35, no.4 (2002), 781-792.

 

[2] I. Kubiaczyk and S. H. Saker, Oscillation of delay parabolic differential equations with several coefficients, J. Comp. Appl. Math. 147 (2002), no. 2, 263-275.

 

[3] I. Kubiaczyk and S. H. Saker, Oscillation of parabolic delay differential equations with positive and negative coefficients, Commentationes Mathematicae XLII (2002), 221-236.

 

[4] S. H. Saker, Oscillation of hyperbolic nonlinear differential equations with deviating arguments, Publ. Math. Debr. 62 (2003), 165-185.

 

 


 Difference Equations

 

[1] S. H. Saker, Oscillation of nonlinear neutral difference equations, Inter. J. Pure Appl. Math.  vol. 1, no. 4 (2002), 459-470.

 

[2] S. H. Saker, Kamenev-type oscillation criteria for forced Emden-Fowler Superlinear difference equations, Elect. J. Diff. Eqns. 2002 (2002), no. 68, 1-9.

 

[3] S. H. Saker, New oscillation criteria for second-order nonlinear neutral delay difference equations, Appl. Math. Comp. 142 (1)(2003), 99-111.

 

[4] S. H. Saker, Oscillation theorems of nonlinear difference equations of second order, Georgian Mathematical J. 10, no.2 (2003), 343-352.

 

[5] S. H. Saker, Oscillation of second-order perturbed nonlinear difference equations, Appl. Math. Comp. 144 (2-3) (2003), 305-324.

 

[6] W. T. Li and S. H. Saker, Oscillation of second-order sublinear neutral delay difference equations, Appl. Math. Comp. 146  (2003), 543-551

 

[7] S. H. Saker and P. J. Y. Wong, Nonexistence of unbounded nonoscillatory solutions of nonlinear perturbed partial difference equations, J. Concrete and Aapplicable Math. 1 (1) (2003), 87-99.

 

[8] S. H. Saker and S. S. Cheng, Kamenev type oscillation criteria for nonlinear difference equations, Czechoslovak Math. J.  54 (2004), 955-967.

 

[9] S. H. Saker and S. S. Cheng, Oscillation criteria for difference equations with damping terms, Appl. Math. Comp. 148 (2004), 421-442.

 

[10] S. H. Saker, Oscillation of second order nonlinear delay difference equations, Bulletin of  the Korean Math. Soc. 40 (2003), 489-501.

 

 [11] S. H. Saker, Oscillation theorems for second-order nonlinear delay difference equations, Periodica Math. Hungarica 47 (2003), 201-213.

 

[12] B. G. Zhang and S. H. Saker, Kamenev-type oscillation criteria for nonlinear neutral delay difference equations, Indian J. Pure Appl. Math 34 (2003), 1571-1584.

 

[13] I. Kubiaczyk, S. H. Saker, J. Morchalo, Kamenev-type oscillation criteria for sublinear delay difference equations, Indian J. Pure Appl. Math. 34 (2003), 273-284.

 

[14] S. H. Saker, Oscillation of third-order difference equations, Portugalae Mathematica 61 (2004), 249-257.

 

[15] S. H. Saker, Oscillation criteria of second-order half-linear delay difference equations, Kyungpook Math. J. (accepted).

 

[16] I. Kubiaczyk and S. H. Saker, Oscillation and asymptotic behavior of second-order nonlinear difference equations, Fasc. Math. No.34 (2004), 39-54.

 

[17] Y. G. Sun and S. H. Saker, Oscillation for second-order nonlinear neutral delay difference equations,  Appl. Math. Comp. 163 (2005) 909-918.

 

[18] S. H. Saker, Oscillation and asymptotic behavior of third-order nonlinear neutral difference equations, Dynamic Systems & Applications, (accepted).

 

[19] S. H. Saker and B. G. Zhang, Oscillation of second-order nonlinear delay damped difference equations, Acta Matematica Sinica, (accepted).

 

[20] Y. G. Sun and S. H. Saker, On the oscillation of second-order perturbed nonlinear difference equations,  Dyn. Sys. Appl. (accepted).


Partial Difference Equations

 

[1] I. Kubiaczyk and S. H. Saker, Kamenev-type oscillation criteria for hyeperbolic nonlinear delay difference equations, Demonstratio Math. 36, no. 1 (2003), 113-122.

 

[2] S. H. Saker, Oscillation of parabolic neutral delay difference equations with several positive and negative coefficients, Appl. Math. Comp. 143 (1), (2003), 173-186.

 

[3] I. Kubiaczyk and S. H. Saker, Oscillation theorems for discrete nonlinear delay wave equations, Z. Angew. Math. Mech. 2003, 83, No. 12, 812-819, (J. Applied Mathematics and Mechanics), (ZAMM).

 

[4] S. H. Saker, Kamenev-type oscillation criteria for hyperbolic nonlinear neutral delay difference equations, Nonlinear Studies 10 (2003), 221-236.

 

[5] S. H. Saker, Oscillation of parabolic neutral delay difference equations, Bull. Korean Math. Soc.  41 (2004), no. 4, 619-632.


Mathematical models and Applications

 

[1] E. M. Elabbasy, S. H. Saker and K. Saif, Oscillation in Host Macroparasite model with delay time, Far East Journal of Applied Mathematics, Vol. 4, no. 2, (2000), 119-142.

 

[2] I. Kubiaczyk and S. H. Saker, Oscillation and stability of nonlinear delay differential equations of population dynamics, Mathematical and Computer Modeling 35 (2002), 295-301.

 

[3] S. H. Saker and S. Agarwal, Oscillation and global attractivity in a nonlinear delay periodic model of Respiratory Dynamics, Comp. Math. Appl. 44 (2002), 5-6, 623-632.


[4] S. H. Saker and S. Agarwal, Oscillation and global attractivity in nonlinear delay periodic model of population dynamics, Applicable Analysis 81 (2002), 787-799.


[5] S. H. Saker and S. Agarwal, Oscillation and global attractivity in a periodic Nicholson's Blowflies model, Mathl. Comp. Modelling 35 (2002), 719-731.

 

[6] S. H. Saker, Oscillation and global attractivity of Hematopoiesis model with delay time, Applied Math. Comp. 136 (2003), no.2-3, 27-36.

 

[7] S. H. Saker and B. G. Zhang, Oscillation in a discrete partial Nichlson’s Blowflies model, Mathl. Comp. Modelling 36 (2002), 9-10, 1021-1026.

 

[8] S. H. Saker, Oscillation and global attractivity in hematopoiesis model with periodic coefficients, Appl. Math. Comp. 142 (2-3) (2003), 477-494.

 

[9] B. G. Zhang and S. H. Saker, Oscillation in a discrete partial delay survival red blood cells model, Mathl. Comp. Modeling 37 (2003), 659-664.

 

[10] I. Kubiaczyk and S. H. Saker, Oscillation and global attractivity of discrete survival red blood cells model, Applicationes Mathematicae 30 (2003), 441-449.

 

[11] S. H. Saker, Oscillation and global attractivity in a periodic delay hematopoiesis model, J. Appl. Math. Computing 13, (2003), 287-300.

 

 [12] S. H. Saker and S. Agarwal, Oscillation and global attractivity of a periodic survival red blood cells model, Journal Dynamics of Continuous, Discrete and Impulsive Systems Series B: Applications & Algorithms 12 (2005), no. 3-4, 429-440.

 

[13] E. M. Elabbasy, S. H. Saker, Dynamics of a class of non-autonomous systems of two non-interacting preys with common predator, J. Appl. Math. Computing 17 (2005) 195-215.

 

[14] S. H. Saker, Existence of positive periodic solutions of discrete model for the interaction of demand and supply, Nonlinear func. anal. Appl. 10 (2005), 311-324.

 

[15] S. H. Saker, Oscillation of continuous and discrete diffusive delay Nicholson’s Blowflies models, Appl. Math. Comp.  (In press).

 

[16] E. M. Elabbasy and S. H. Saker, Periodic solutions and oscillation of discrete nonlinear delay population dynamics model with external force,  IMA J. Appl. Math. (2005), 1-15.

 

[17] S. H. Saker and Y. G. Sun, Existence of positive periodic solutions of nonlinear discrete model exhibiting the Allee effect, Appl. Math. Comp. (Accepted).

 

[18] S. H. Saker and Y. G. Sun, Oscillatory and asymptotic behavior of positive periodic solutions of nonlinear discrete model exhibiting the Allee effect, Appl. Math. Comp. (Accepted).

 

[19] S. H. Saker, Oscillation and global attractivity of impulsive periodic delay respiratory dynamics model, Chinese Annals of Math. 26 B (2005), 511-522.

 

[20] E. M. Elabbasy,  S. H. Saker  and H. EL-Metwally, Oscillation and stability of nonlinear discrete models exhibiting the Allee effect,  Mathematica  Slovaka (accepted).

 

[21] E. M. Elabbasy H. N. Agiza, and S. H. Saker, Global Existence of Positive Periodic Solutions of Two-Dimensional Logistic Model for the Interaction of Demand and Supply,  Mansoura Science Bulletin  (accepted).

 

[22] S. H. Saker and Y. g. Sun, Positive Periodic Solution of Discrete Three-Level Food-Chain Model of Holling Type II,  Appl. Math. Comp. (Accepted).


 

Dynamic Equations on Time Scales

 

[1] S. H. Saker, Oscillation of nonlinear dynamic equations on time scales, Appl. Math. Comp. 148 (2004), 81-91.

 

[2] L. Erbe, A. Peterson and S. H. Saker, Oscillation criteria for second-order nonlinear dynamic equations on time scales. J. London Math. Soc. 76 (2003), 701-714.

 

[3] M. Bohner and S. H. Saker, Oscillation of second order nonlinear dynamic equations on time scales, Rocky Mountain J. Math. 34, no. 4 (2004), 1239-1254.

 

[4] E. Akin-Bohner, M. Bohner and S. H. Saker, Oscillation for certain of class of second order Emden-Fowler dynamic equations, Electr. Transaction Numerical Anal. (to appear).

 

[5] M. Bohner and S. H. Saker, Oscillation criteria for perturbed nonlinear dynamic equations, Mathl. Comp. Modeling 40 (2004), 3-4, 249-260.

 

[6] R. Agarwal, M. Bohner and S. H. Saker, Oscillation criteria for second order delay dynamic equation, Canadian Applied Mathematics Quarterly, (accepted).

 

[7] S. H. Saker, Oscillation criteria of second-order half-linear dynamic equations on time scales, J. Comp. Appl. Math. 177 (2005), 375-387.

 

[8] S. H. Saker, Boundedness of solutions of second-order forced nonlinear dynamic equations, Rocky Mountain. J. Math. (Accepted).

 

[9] R. P. Agarwal, D. O'Regan and S. H. Saker, Oscillation criteria for second-order nonlinear neutral delay dynamic equations, Journal of Mathematical Analysis and Applications 300 (2004), 203-217.

 

[10] L. Erbe, A. Peterson and S. H. Saker, Asymptotic behavior of solutions of a third-order nonlinear dynamic equation on time scales, J. Comp. Appl. Math.  181, No. 1 (2005), 92-102 .

 

[11] S. H. Saker, Oscillation of second-order forced nonlinear dynamic equations on time scales, E. Journal of Qualitative Theory Differential Equations  No. 23 (2005), 1-17.

 

[12] S. H. Saker, New oscillation criteria for second-order nonlinear dynamic equations on time scales, Nonlinear Fun. Anal. Appl. (NFAA), (accepted).

 

[13] S. H. Saker, Oscillation of second-order nonlinear neutral delay dynamic equations on time scales, J. Com. Appl. Math. 187 , (2006), 123-141.

 

[14] L. Erbe, A. Peterson and S. H. Saker, Kamenev-type oscillation criteria for second-order linear delay dynamic equations, Dynamic Syst. & Appl. 15 (2006), 65-78.

 

[15] S.H. Saker, Oscillation criteria for a certain class of second-order neutral delay dynamic equations, Dynamics of Continuous, Discrete and Impulsive Systems Series B: Applications & Algorithms (accepted).

 

[16] S. H. Saker, Oscillatory behavior of linear neutral delay dynamic equations on time scales, Kyungpook Math. Journal (accepted).

 

[17] R. P. Agarwal, D. O'Regan and S. H. Saker, Oscillation criteria for nonlinear perturbed dynamic equations of second-order on time scales, Journal of Applied Mathematics and Computing, (accepted).

 

[18] S. H. Saker, Oscillation of second-order neutral delay dynamic  equations of Emden-Fowler type, Dynamic Sys. Appl. (accepted).

 

[19] L. Erbe, A. Peterson and S. H. Saker, Oscillation and asymptotic behavior of a third-order nonlinear dynamic equation, Cana. Appl. Math. Quart. (submitted)

 


      Submitted

 

[1] R. P. Agarwal, D. O'Regan and S. H. Saker, Oscillation and global attractivity in a delay periodic host macroparasite model, Appl. Math. Comp. (submitted)

 

[2] R. P. Agarwal, D. O'Regan and S. H. Saker, Philos-type oscillation criteria of second-order half-linear dynamic equations on time scales, Rocky Mount. J. Math. , (submitted)

 

[3] R. P. Agarwal, D. O'Regan and S. H. Saker, Properties of bounded solutions of nonlinear dynamic equations on time scales, Canadian Appl. Math. Quart. (submitted).